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Neonatal body condition, immune responsiveness, and hematocrit
predict longevity in a wild bird population
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Abstract. Measures of body condition, immune function, and hematological health are
widely used in ecological studies of vertebrate populations, predicated on the assumption that
these traits are linked to fitness. However, compelling evidence that these traits actually predict
long-term survival and reproductive success among individuals in the wild is lacking. Here, we
show that body condition (i.e., size-adjusted body mass) and cutaneous immune
responsiveness to phytohemagglutinin (PHA) injection among neonates positively predict
recruitment and subsequent longevity in a wild, migratory population of House Wrens
(Troglodytes aedon). However, neonates with intermediate hematocrit had the highest
recruitment and longevity. Neonates with the highest PHA responsiveness and intermediate
hematocrit prior to independence eventually produced the most offspring during their lifetime
breeding on the study site. Importantly, the effects of PHA responsiveness and hematocrit
were revealed while controlling for variation in body condition, sex, and environmental
variation. Thus, our data demonstrate that body condition, cutaneous immune responsive-
ness, and hematocrit as a neonate are associated with individual fitness. Although hematocrit’s
effect is more complex than traditionally thought, our results suggest a previously

underappreciated role for this trait in influencing survival in the wild.
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INTRODUCTION

A fundamental aim of evolutionary ecology is the
identification of traits related to fitness and the processes
that shape variation in those traits. Although the
physical condition, immune defenses, and health state
of organisms are putatively associated with their
survival, relationships between these traits and fitness
in natural populations are largely unknown. Notwith-
standing the logistical constraints in obtaining estimable
fitness proxies in wild populations (e.g., lifetime
reproductive success), the relationship between pheno-
type and fitness is elusive because variation in a given
trait may have complex effects on survival and
reproduction. For example, individuals with better-
than-average immunity might be expected to survive
better than those with poorer immune systems through
increased parasite defenses, but heightened immunity
may also reduce longevity and fitness through self-
damage (Sheldon and Verhulst 1996, Moller and Saino
2004, Sadd and Siva-Jothy 2006, Graham et al. 2010,
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Wilcoxen et al. 2010, Guerreiro et al. 2012). Thus,
selection should favor optimal rather than maximal
immunoresponsiveness, yet what is optimal is seldom
clear.

Among the traits typically measured by animal
ecologists, body condition is perhaps the most widely
used and also the most controversial in its precise
meaning and correct estimation (e.g., Packard and
Boardman 1988, Garcia-Berthou 2001, Green 2001,
Schulte-Hostedde et al. 2005, Schamber et al. 2009).
Here we use a common definition of body condition as
body mass adjusted for body size (Garcia-Berthou 2001,
Ardia 2005¢). There is evidence from a number of
studies, albeit mixed, that body mass or condition is
positively associated with recruitment and survival in
local populations (Clutton-Brock et al. 1987, Tinbergen
and Boerlijst 1990, Hochachka and Smith 1991, Young
1996, Both et al. 1999). A positive effect of neonatal
body condition on survival might be expected if body
condition were indicative of lipid reserves that young
will need after leaving the nest (e.g., Thompson et al.
1993, Naef-Daenzer et al. 2001, Ardia 2005¢), particu-
larly in migratory birds where fledglings have a narrow
window of time to learn to fly, avoid predators, and
forage for themselves prior to autumn migration (see
also Lindstrom 1999, Mitchell et al. 2011). Indeed,
postfledging mortality often imposes an enormous
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bottleneck for neonates in altricial birds (e.g., Naef-
Daenzer et al. 2001, Tarwater et al. 2011). Paradoxically,
however, the relationship between mass and survival is
not always positive (Lindén et al. 1992, Young 1996,
Gaillard et al. 2000, Merild et al. 2001).

Measures of immune responsiveness and health state
are also commonly used in ecological studies, but the
relationships between variation in these traits and
survival are even less clear than for body condition.
Interspecific comparisons provide evidence that immune
responsiveness varies with average life span (Tella et al.
2002), suggesting a relationship between immunity and
longevity. It is unclear, however, whether intraspecific
variation in immune responsiveness is associated with
individual differences in longevity and lifetime repro-
ductive success within populations (Viney et al. 2005,
Nussey et al. 2014). Life-history theory posits that
investment in immune function should vary with pace of
life (e.g., Martin et al. 2001, Ricklefs and Wikelski 2002,
Lee 2006). Typically, general and inflammatory immune
defenses against pathogens should be favored in short-
lived species with rapid growth, short generation times,
and high juvenile mortality, whereas specific and
humoral immune responses should be favored in long-
lived species with lower juvenile mortality and longer
development times (see also Tieleman et al. 2005).

Hematocrit may also contribute significantly to
individual fitness. Hematocrit is the fraction of whole
blood composed of erythrocytes, and it determines an
individual’s ability to deliver oxygen to tissues. Despite
this critical function, results to date have questioned the
significance of variation in hematocrit and its relation-
ship with individual quality and fitness in nature
(Dawson and Bortolotti 1997, Fair et al. 2007, Norte
et al. 2008). Although increased hematocrit promotes
the delivery of oxygen to tissues, increasing hematocrit
also causes blood viscosity to increase at an increasing
rate, which also reduces oxygen delivery (Birchard 1997,
Schuler et al. 2010, Williams 2012). Consequently,
oxygen transport is reduced in individuals with below-
optimal hematocrit because of a reduced ability to carry
oxygen, while above-optimal increases in hematocrit
lead to disproportionate increases in blood viscosity that
also reduce cardiac efficiency. Indeed, above-optimal
increases in hematocrit can cause earlier exhaustion
during physical activity and increased cardiopulmonary
hypertension (Maxwell et al. 1992, Birchard 1997,
Schuler et al. 2010, Williams 2012). Thus, variation in
hematocrit may actually have a profound but nonlinear
association with survival in the wild.

In this study, we use a multiyear data set to test
whether body condition (i.e., size-adjusted body mass),
cutaneous immune responsiveness, and hematocrit
among neonates prior to independence are associated
with recruitment, longevity (i.e., number of years as a
breeder), and lifetime reproductive success in a wild
population of House Wrens (Troglodytes aedon). House
Wrens are short-lived in temperate North America, with
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most offspring not surviving to adulthood and those
that do usually breeding in only one year (Johnson
2014). Consequently, individual House Wrens are much
less likely than those of longer-lived species to encounter
a diverse array of parasite fauna during their lifetime, so
mounting nonspecific and inflammatory immune re-
sponses should be favored heavily in this species
(Ricklefs and Wikelski 2002, Lee 2006). Therefore, we
used PHA-induced skin swelling as a measure of
cutaneous immune responsiveness, which is a general
immune response characterized by inflammation and the
recruitment of both innate and adaptive components of
the immune system (McCorkle et al. 1980, Martin et al.
2006b, Vinkler et al. 2014). Given that House Wrens
have short life spans and attempt to produce multiple
broods of young within breeding seasons (Johnson 2014;
i.e., a live-fast, die-young life history), we predicted that
body condition and cutaneous immune responsiveness
would be positively correlated with recruitment, longev-
ity, and lifetime reproductive success, whereas the
relationship between hematocrit and recruitment and
longevity may be nonlinear.

METHODS
Study species and field procedures

House Wrens are small songbirds with a widespread
distribution in North America (biology summarized in
Johnson 2014). Females lay clutches of 4-8 eggs. Only
females incubate eggs and brood nestlings, but both
parents provision nestlings. Young fledge 14-16 days
post-hatching and reach independence within ~14 days
(Bowers et al. 2013, Johnson 2014). We studied a
migratory population of House Wrens from 2004 to
2013 in Illinois, USA (40°40" N, 88°53" W). Nest boxes
(N = 820; for details, see Lambrechts et al. 2010) were
distributed at a density of 5.4 boxes/ha. Dispersal
between breeding seasons is limited; on average, the
nesting sites of males and females shift 67 m and 134 m,
respectively, from their location the year before (Drilling
and Thompson 1988). There is also a strong preference
for nesting in boxes rather than natural tree cavities,
with ~95% of nests at any given time being in the nest
boxes supplied (Drilling and Thompson 1988). Of the
126 recruits we captured, there were 17 that had a “gap
year” (i.e., they were captured breeding on the study
area in years ¢ and 7 + 2, but not in year ¢ + 1). These
birds (1) may have been at the study site and bred in a
natural cavity that we did not detect, or were present but
did not breed that year, or (2) may have been in a
different geographic location. Reassuringly, whether or
not an individual had a gap year was unrelated to any of
the variables that we measured (all P > 0.1), suggesting
that differences in return rate with respect to the traits
that we measured are attributable primarily to differ-
ences in survival and not dispersal. Thus, adults
surviving from one year to the next were likely to be
captured breeding in our nest boxes at least once during
a given breeding season, and failing to detect certain
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individuals during gap years should add only noise, not
a bias, to our results.

Each year we attempted to capture and mark all
individuals on the site with numbered leg bands.
Nestlings in this study hatched during the 2004-2006
and 2011-2012 breeding seasons. Eleven days after
hatching began within nests, we weighed all nestlings
(£0.1 g) and measured their tarsus length (=0.1 mm).
We also drew a blood sample to determine sex and
paternity, as well as hematocrit (for details, see Forsman
et al. 2008, 2010, Bowers et al. 2011). We administered a
phytohemagglutinin test in the left wing web (prepata-
gium) 11 days post-hatching to measure cutaneous
immune response. We used a digital thickness gauge
(Mitutoyo no. 547-500; Mitutoyo, Aurora, Illinois,
USA) to measure pre-injection web thickness three
times. We then injected the web intradermally with a 50-
pL solution of PHA in phosphate-buffered saline (PBS;
concentration 5 mg PHA/mL PBS). Upon injection,
PHA stimulates recruitment of leucocytes and inflam-
matory effectors, causing tissue swelling (McCorkle et
al. 1980, Martin et al. 2006, Vinkler et al. 2014). We
measured swelling 24 h post-injection. PHA response
was the difference between the mean of three pre- and
post-injection measures.

To assess abiotic environmental variation, we ob-
tained daily temperature and rainfall data from the
National Climatic Data Center for the weather station
at Chenoa, McLean County, Illinois, USA (40°44’ N,
88°43” W), the nearest (~16 km) station to the study
area. Temperature data at this station are unlikely to
have been affected by any heat-island effect from
urbanization because the population size of Chenoa
was less than 2000 and did not change substantially
during the study. Both daily temperature (rg45=0.319, P
< 0.001) and rainfall (rg45 =0.164, P < 0.001) increased
over the course of the breeding seasons in which we
measured nestling traits, so we included the hatching
date of nests as a covariate in our analyses to account
for this and other seasonal environmental variation. For
example, the abundance of high-quality arthropod prey,
particularly lepidopteran larvae, generally declines over
the course of the breeding season in central Illinois
forests, and neonates produced later within breeding
seasons also have a shorter post-fledging period over
which to learn to fly and forage for themselves prior to
autumn migration. Thus, the hatching date of nestlings
reflects both biotic and abiotic components of environ-
mental variation and is likely to play an important role
in mediating survival (see also Naef-Daenzer et al.
2001).

Statistics

We used SAS 9.3 (SAS Institute 2011) for analyses,
with two-tailed tests. Of 3368 nestlings from 647 broods,
126 (3.7%) recruited into the breeding population.
Among recruits, 86 were captured breeding at one year
of age, 21 at two years, 13 at three years, and six at four
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years of age (those breeding at ages greater than one
year also bred at younger ages). We included all young
banded 11 days post-hatching in all analyses, and
analyzed longevity in relation to body mass, tarsus
length, PHA responsiveness, hematocrit, and sex using a
Cox proportional-hazards regression model (survival
analysis; PROC PHREG in SAS). We included hatching
date as a covariate to account for environmental
variation, and we used the robust sandwich estimator
to group offspring within years, their natal nest, and
maternal identity to account for nonindependence,
similar to the use of random effects in linear mixed
models (Allison 2010). Because we included tarsus
length as a covariate in our analysis, effects of nestling
body mass can be interpreted as effects of size-adjusted
body mass, or body condition (Garcia-Berthou 2001).
This is a useful measure of condition because it
frequently predicts lipid reserves slightly better than
unadjusted body mass, although the specific index of
condition used should generally have no appreciable
effect on the outcome of statistical tests (Ardia 2005c¢,
Schamber et al. 2009). The effect of hematocrit on
recruitment appeared to be nonlinear; thus, we followed
our main survival analysis with a logistic regression
analyzing the probability of recruitment in relation to
hematocrit, including a quadratic term for hematocrit,
while controlling for nest of origin, maternal identity,
and year. We then analyzed lifetime reproductive
success, measured as fledgling production by the
neonates in our initial cohorts (see Merild and Sheldon
2000). We analyzed this using a linear mixed model with
the natal nest, maternal identity, and year as random
effects and the same predictors used to analyze
longevity; we also added quadratic terms to this model
(following McGraw and Caswell 1995) because some of
the relationships between nestling traits and longevity
were nonlinear.

RESULTS

Offspring body condition (size-adjusted mass) and
PHA response were each positively correlated with
longevity (Table 1). Nestlings with the highest body
condition and PHA responsiveness had the highest
frequency of breeding at one year of age, and those with
the highest PHA responses were most likely to breed
through two years of age (Fig. 1, Table 1). Although the
probability of breeding as an adult within the popula-
tion differed slightly between the sexes (5.2% * 0.6% for
males, 4.1% = 0.6% for females; mean * SE), there was
no sex difference in the average number of years that
these individuals bred on the study area (1.50 = 0.10
years for males, 1.54 = (.13 years for females; mean =
SE).

The relationship between hematocrit and longevity
was more complex than for body condition and PHA
responsiveness. Nestlings with slightly below-average
hematocrit had the highest recruitment and were most
likely to breed through three years of age (Fig. 1C, Table
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TaBLE 1. Relationship between neonatal phenotype and longevity in the House Wren (Troglodytes aedon); negative parameter
estimates reflect a positive relationship between the independent variable and age-specific survival.

Variable Estimate = SE Wald »* df P
Body mass —0.094 = 0.040 5.72 1 0.017
Tarsus length —0.035 = 0.046 0.58 1 0.445
PHA responsiveness —0.623 = 0.108 33.21 1 <0.001
Hematocrit 0.024 = 0.006 18.86 1 <0.001
Sex 0.102 = 0.042 597 1 0.015
Hatching date 0.010 = 0.002 30.76 1 <0.001

1), resulting in an overall negative association between
hematocrit and longevity. However, nestlings with the
highest hematocrit also tended to have above-average
recruitment; thus, we followed up our main survival
analysis with a logistic regression to analyze recruitment
in relation to hematocrit. This analysis included nestling
hematocrit as both a linear (parameter estimate = SE =
0.402 + 0.191, y>=7.13, P=0.008) and a quadratic term
(parameter estimate + SE=—0.004 + 0.002, x> =6.39, P
= 0.012) confirming that nestlings with intermediate
hematocrit had the highest recruitment (Fig. 2).
Responsiveness to PHA injection and hematocrit had
effects on the reproductive success of neonates similar to
the effects on longevity (Table 2). The number of
offspring that an individual fledged in its lifetime
breeding on the study site was positively associated with
PHA responsiveness, whereas intermediate hematocrit
predicted the highest future reproductive success.

DiscussioN

In our study population, cutaneous immune respon-
siveness to PHA injection was positively correlated with
longevity and future reproductive success after control-
ling for body condition, sex, and environmental
variation. Nestlings mounting the highest PHA respons-
es had the highest interannual return rates, suggesting
that, in an ecological context, optimal responsiveness
lies closer to the maximum than usually thought. Indeed,
recent studies have found positive associations between
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PHA responsiveness and recruitment in local popula-
tions (Cichon and Dubiec 2005, Moreno et al. 2005,
Lopez-Rull et al. 2011). However, our study is unique in
that we were able to follow individuals from multiple
cohorts to analyze longevity as a combination of local
recruitment and subsequent interannual survival within
the population, a major determinant of fitness
(McCleery et al. 2004; see also Cam et al. 2002). Life-
history theory posits that, within and among species,
investment in immune function should vary with pace of
life (Ricklefs and Wikelski 2002, Lee 2006). Specifically,
investment in general and inflammatory immune re-
sponses should be favored in short-lived species with
rapid growth, short generation times, and high juvenile
mortality (i.e., type III survivorship), whereas specific
and humoral immune responses should be favored in
long-lived species with longer development times and
type I survivorship (Mauck et al. 2005, Tieleman et al.
2005, Martin et al. 2007, Lee et al. 2008, Arriero et al.
2013). PHA-induced skin swelling is a very general
measure of cutaneous immune responsiveness that
encompasses components of both innate and acquired
immunity (Martin et al. 2006b), although recent work
suggests that this response is primarily innate and that
the adaptive component contributes much less to this
response than traditionally thought (Vinkler et al. 2014).
That most neonates in our study did not recruit to the
breeding population, but that those with highest
neonatal PHA responsiveness had the highest return

1 C) Hematocrit

Age (yr)

Fic. 1. Longevity in relation to (A) neonatal body mass, (B) PHA (phytohaemagglutinin injection) responsiveness, and (C)
hematocrit (product-limit estimates). Data are pooled by quartiles for visualization (quadrants 1-4 represent the lowest 25% to the

highest 25% of nestlings for each trait value).
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Fic. 2. Recruitment into the breeding population in

relation to hematocrit. Open symbols above and below curves
represent nestlings that did and did not recruit to the breeding
population, respectively, and the solid curve represents the
logistic regression line (probability of recruitment) with 95%
confidence limits (dashed lines).

rates, suggests a critical role for this general, inflamma-
tory response in such a short-lived species.

The production of an immune response to PHA
injection is often thought to be energetically costly and
potentially traded off against other functions, such as
growth or reproduction (Martin et al. 2003, 20064,
Tschirren et al. 2003, Dubiec et al. 2006). Although
compelling examples of trade-offs between immunity
and other life-history functions have been documented
(Ilmonen et al. 2000, Casto et al. 2001, Hanssen et al.
2004, Ardia 2005h, Martin et al. 2008, Knowles et al.
2009), results are frequently mixed and depend on
context (Williams et al. 1999, Lochmiller and Deeren-
berg 2000, Norris and Evans 2000, Bowers et al. 2012).
A recent analysis of a subset of nestlings involved in this
study indicates that PHA responsiveness is positively
correlated with body mass (Forsman et al. 2010; for
similar examples in other study species, see also West-
neat et al. 2004, Gleeson et al. 2005), contrary to what
might be predicted if growth and immunodevelopment
were traded off against each other. Thus, our findings
for body condition and immune responsiveness are
consistent with the concept of individual quality or the

TABLE 2.
observed fledgling production).
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ability to acquire resources as a mediator of life-history
trade-offs (van Noordwijk and de Jong 1986, Ardia
2005a, Love et al. 2008, Hamel et al. 20094, b, Wilson
and Nussey 2010, French et al. 2011), contributing to
variation in fitness within populations. Although quality
is difficult to define and to quantify (Pirsig 1974, Wilson
and Nussey 2010), our results suggest potential for this
concept as not merely an abstract construct, but as a
complex, multivariate phenotype contributing strongly
to individual differences in fitness. Indeed, if all
individuals optimize life-history trade-offs, differences
in longevity and reproductive success within populations
should be random and much smaller than what is often
observed (e.g., Bérubé et al. 1999, Cam et al. 2002,
Hamel et al. 20094, b), suggesting a role for individual
quality in determining differences in survival and
reproduction in the wild.

Hematocrit may also have important consequences
for individual quality and fitness (Williams 2012).
Oxygen-carrying capacity shapes an individual’s ability
to perform nearly all life-history functions, and low
hematocrit is often associated with parasitism and poor
nutrition (Richner et al. 1993, Ots et al. 1998, Potti et al.
1999, Kilgas et al. 2006, Fair et al. 2007). Thus, the
relationship between hematocrit and longevity that we
detected could be paradoxical if hematocrit were always
positively indicative of condition, but this is not likely to
be the case. High hematocrit can result from dehydra-
tion, and, given that hematocrit is positively associated
with metabolism (Hammond et al. 2000, Fair et al.
2007), it is also possible that increased neonatal
hematocrit reflects heightened metabolic activity, with
potential costs to longevity. Increases in hematocrit also
cause blood viscosity to increase at an increasing rate
(Birchard 1997, Williams 2012). Therefore, oxygen
transport is reduced in individuals with both
below- and above-optimal hematocrit (Birchard 1997,
Schuler et al. 2010, Williams 2012). For example,
maximal oxygen uptake in wild-type mice in the
laboratory occurred at intermediate hematocrit values,
and their exhaustion during exercise came about faster
at hematocrit values both below and above the optimal
range (Schuler et al. 2010). Although differences in mean
hematocrit values may exist among species, the hypoth-

Relationship between neonatal phenotype and lifetime reproductive success in House Wrens (as assessed by total

Variable Estimate = SE F df P
Body mass 0.700 + 0.878 0.63 1, 1290 0.426
Tarsus length 0.074 + 0.094 0.62 1, 1052 0.431
PHA responsiveness —1.077 = 0.486 4.92 1, 640 0.027
Hematocrit 0.142 = 0.078 3.25 1, 982 0.072
Sex 0.039 = 0.104 0.14 1, 1304 0.707
Mass® —0.038 = 0.045 0.72 1, 1280 0.396
PHA? 0.905 = 0.314 8.33 1, 1085 0.004
Hematocrit® —0.002 =+ 0.001 3.29 1,972 0.070
Hatching date —0.005 = 0.003 3.38 1, 102 0.069
Intercept —5.984 * 4.592
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esis of an optimal hematocrit easily can be expanded to
predict Darwinian fitness in the wild. Our data suggest
that optimal hematocrit for physical activities, such as
learning to fly and avoiding predators, lies well below
maximal values (Fig. 2). Interestingly, hematocrit often
declines in breeding individuals providing energetically
demanding parental care relative to nonbreeding indi-
viduals across a wide range of vertebrate taxa (Williams
et al. 2004, Fair et al. 2007, Hanson and Cooke 2009,
Cooke et al. 2010), although further work is needed to
determine whether this is an adaptive reduction to
facilitate increased energy demands or a consequence of
osmoregulatory adjustments to blood during reproduc-
tion (Williams et al. 2004, Fair et al. 2007, Wagner et al.
2008, Williams 2012). Thus, hematocrit may play an
important role in the life history of all vertebrates, and
further experimental work may shed light on the
functional significance of this trait in mediating long-
term consequences for survival and reproduction.

In conclusion, body condition, cutaneous immune
responsiveness, and hematocrit have a pronounced
influence on longevity in this wild bird population.
These traits may be best regarded, not as proxies or
surrogates of fitness (see also Wilson and Nussey 2010
for discussion), but as a subset of traits that contribute
to variation in fitness within populations. Future work
investigating the genetic variation underlying such traits,
paired with experimental studies that manipulate indi-
vidual differences in phenotypic quality (e.g., body
condition, immune responsiveness, or hematocrit), while
determining the consequences of such variation, could
provide insight into how natural selection acts on these
traits in the wild.
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