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Theory predicts that a mother’s ability to produce high-quality offspring should influence whether she produces sons or daughters. 
We tested this hypothesis in house wrens (Troglodytes aedon) using a within-clutch design in which we induced females to produce 
more eggs (8–10 eggs) than they normally would (6 or 7 eggs) to determine whether maternal effort and the allocation of resources to 
supernumerary eggs (those laid beyond the usual number) influence the offspring sex ratio. At the clutch level, we predicted that high-
quality females, as defined by their ability to produce supernumerary eggs in response to egg removal, would overproduce sons rela-
tive to females treated the same way but producing fewer eggs. At the level of the egg, we predicted that supernumerary eggs would 
more likely contain daughters than sons. As predicted, females producing extralarge clutches overproduced sons and those producing 
smaller clutches produced relatively more daughters. Last-laid eggs were also more likely to contain daughters than earlier-laid eggs 
although there was no difference in the mass of eggs containing males and females. These results suggest that mothers adjust the sex 
of their offspring strategically to maximize fitness.
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Introduction
Variation in individual quality plays a profound role in shaping 
parental investment (van Noordwijk and de Jong 1986; Clutton-
Brock 1991; McCleery et  al. 2008; Weladji et  al. 2008; Hamel 
et  al. 2009a,b). The adaptive basis of  parental strategies is best 
revealed by forcing individuals to deviate from their evolutionarily 
shaped reproductive tactics; to that end, experimental manipula-
tion of  egg production has emerged as a powerful tool in studies of  
reproductive strategies and parental care (Heaney and Monaghan 
1995; Monaghan et  al. 1995, 1998; Williams 2001; Wagner and 
Williams 2007). For example, Nager et  al. (1999, 2000) removed 
eggs from nests of  lesser black-backed gulls (Larus fuscus) during 
egg production, causing females to produce replacement eggs. The 
supernumerary eggs (those produced beyond the normal clutch 
size) weighed less and contained disproportionately lower lipid 
content than earlier-laid eggs, and the hatchlings from these super-
numerary eggs were less likely to survive than young hatchlings 
from earlier-laid eggs (Nager et al. 1999, 2000). A subset of  these 
females were provided supplemental food during egg laying, and 

these females produced more eggs and larger eggs, which improved 
offspring survival relative to nonsupplemented females (Nager 
et al. 1999), demonstrating how resource acquisition can influence 
parental investment and generate positive associations among life-
history traits (e.g., clutch size and egg size).

In addition to mediating life-history traits such as fecundity and 
survival, maternal quality is predicted to influence a mother’s rela-
tive investment in sons and daughters (Trivers and Willard 1973; 
Charnov 1982; Frank 1990; West 2009). Trivers and Willard (1973) 
originally conceived the idea that maternal quality should influ-
ence the sex ratio that a mother produces, and their hypothesis 
has subsequently been broadened to explain why females should 
invest in 1 sex over the other across a variety of  conditions that 
influence the quality of  offspring at the time of  independence 
from parental care (reviewed in Cockburn et al. 2002; West 2009). 
Generally, increased allocation of  resources is predicted to benefit 
sons’ future reproductive success to a greater extent than daugh-
ters’ (Figure  1A in Krist 2006); thus, Trivers–Willard theory pre-
dicts that mothers with above-average ability to invest in offspring 
should overproduce sons relative to mothers with lower investment 
ability (see also Carranza and Polo 2012; Pryke and Rollins 2012; 
Bowers et al. 2013a). Similarly, Myers (1978) hypothesized that the 
sex ratio should be female biased particularly when resources are in Address correspondence to E. K. Bowers. E-mail: ekbowers@ilstu.edu.
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short supply in species in which males are more sensitive to stress-
ful conditions than females and emphasized that females should 
maximize the number of  offspring that survive to reproduce rather 
than the expected reproductive success of  individual offspring (i.e., 
the Trivers–Willard model). Thus, if  either sex is more sensitive to 
stressful conditions, mothers can maximize the number of  offspring 
that survive to independence by overproducing the less-sensitive 
sex. A  critical insight that has begun to emerge from subsequent 
work is that measures of  maternal condition traditionally used by 
evolutionary ecologists (e.g., body mass or size) often explain less 
variation in offspring sex ratios than variables that more closely 
reflect a female’s ability to rear high-quality offspring (Sheldon and 
West 2004; Pryke and Rollins 2012). Although morphological or 
physiological variables could certainly be indicative of  maternal 
quality, behavioral variables that better reflect overall reproductive 
effort or investment ability, such as a female’s ability to produce 
supernumerary eggs in response to egg removal, have the potential 
to offer new insights (see also Sheldon and West 2004; Robert et al. 
2010; Bowers et al. 2013a).

In a recent study, we used an egg-removal treatment that 
increased the number of  eggs laid by female house wrens (Troglodytes 
aedon) and found that supernumerary eggs declined in mass relative 
to earlier-laid eggs (Bowers et al. 2012a). Females laying extra eggs 
were less likely than unmanipulated females to attempt another 
brood later in the same season, and manipulated females that 
attempted another brood took longer to do so and laid fewer eggs 
than unmanipulated females (Bowers et  al. 2012a). The ability to 
produce extra eggs beyond what a female would normally produce 
is strongly resource dependent: females with access to greater nutri-
tional resources are able to produce more eggs in response to an 
egg-removal treatment than females on poorer quality diets (Nager 
et al. 1999; Williams and Miller 2003; Mänd et al. 2007). Therefore, 
in this study, we used the egg-removal treatment to reveal an aspect 
of  maternal quality, as high-quality mothers are more capable of  
producing extralarge clutches than low-quality mothers. We then 
used this measure to predict the sex ratio among their eggs.

Adult male house wrens frequently obtain multiple mates and 
engage in extrapair copulations (Soukup and Thompson 1997; 
Johnson 1998; Albrecht and Johnson 2002; Forsman, Vogel, et al. 
2008; Johnson et  al. 2009), thus increasing variance in the repro-
ductive success of  males relative to females. Moreover, the quality 
of  the posthatching environment persists into adulthood and car-
ries sex-specific consequences, as sons that receive increased alloca-
tion as neonates and are in good condition prior to independence 
enjoy increased reproductive success relative to daughters reared in 
similar conditions (E. K. Bowers, unpublished data). Thus, females 
with above-average ability to invest in offspring are predicted to 
overproduce sons relative to those with a lower capacity to invest. 
As such, mothers able to produce more eggs (i.e., 9 or 10 eggs) in 
response to the manipulation were predicted to produce a male bias 
relative to mothers that were subjected to the same manipulation 
but producing fewer eggs (i.e., 6 or 7 eggs).

Aside from adjusting clutch sex ratios, mothers have also been 
shown to modify the sex of  individuals within clutches in relation 
to prehatching investment (Rutkowska and Cichoń 2002; Cichoń 
et al. 2003; Rubolini et al. 2009; Martyka et al. 2010; Saino et al. 
2010). Female house wrens often produce sons and daughters in 
unequal frequency along the egg-laying sequence, and the posi-
tion of  sons and daughters in the posthatching size hierarchy has 
sex-specific effects on offspring quality, as sons suffer to a greater 
extent than daughters from hatching late and having to compete 

with older siblings (Bowers et  al. 2011; see also McDonald et  al. 
2005; Bogdanova and Nager 2008). Thus, we compared individ-
ual eggs within clutches to test whether the reduced allocation of  
resources to supernumerary eggs influenced the sex of  individual 
offspring. Within clutches, we predicted that the proportion of  
daughters would increase among supernumerary eggs (eggs 8–10), 
which would hatch offspring that would be younger and smaller 
than offspring hatching from earlier-laid eggs (eggs 5–7; Carranza 
2004).

Methods
Study site and species

We studied a box-nesting population of  house wrens in 2010 
at the East Bay study area in north-central Illinois, United 
States (40°39′12″N, 88°55′W) in secondary deciduous forest. 
Nestboxes (N = 120) were mounted above aluminum disks (diam-
eter  =  48.3 cm) on 1.5-m metal poles to discourage nest preda-
tors and spaced 30 m apart along transects oriented in the north 
and south direction separated by 60 m (density = 5.4 nestboxes/
ha). Lambrechts et al. (2010) provide details on nest-box construc-
tion materials and dimensions. House wrens are small (10–12 g), 
migratory songbirds with a breeding range spanning the midsec-
tion of  North America (Johnson 1998). Males typically arrive 
on the study area in late April, and select and defend a nest-box 
within which they begin nest construction by creating a platform 
of  sticks. Females arrive slightly later than males, select a mate, 
and complete nest construction prior to laying eggs; females 
lay 1 egg/day until their clutch is completed, laying a mean 
of  6.7–7.0 eggs for clutches produced in the first half  of  sum-
mer (Table  1 in Dobbs et  al. 2006). Only females incubate eggs 
and brood hatchlings, and the time at which the female initiates 
incubation relative to clutch completion determines the degree 
of  hatching asynchrony of  the eggs within a clutch, which has 
a profound influence on subsequent offspring development and 
survival (Bowers et  al. 2011, 2013b). Approximately half  of  the 
females that complete a successful nesting attempt early enough 
in the breeding season attempt a second brood on the study area 
(Bowers et al. 2012a,b). Female house wrens readily produce addi-
tional eggs if  eggs are removed from the nest during the laying 
stage (see Procedures and experimental design and further details 
in Bowers et al. 2012a).

House wrens are suitable for studying sex allocation because 
mothers routinely allocate the sexes of  their offspring according to 
sex-allocation theory across a range of  social and ecological condi-
tions, despite the fact that male and female offspring are sexually 
size monomorphic (Bowers et al. 2011, 2012b). Although Trivers–
Willard theory has traditionally been thought to be more applica-
ble to sexually size-dimorphic species than to species with sexual 
size monomorphism (Sheldon and West 2004; West 2009), there is 
accumulating evidence that a unit change in parental investment, or 
variation in the rearing environment, can induce sex-specific effects 
on offspring that are sexually size-monomorphic (Rosivall et  al. 
2010; Bowers et  al. 2011; Pryke et  al. 2011). Thus, sexually size-
monomorphic species are useful for testing sex-allocation theory 
because sex-ratio adjustment should be attributable to differences 
in the effect that variation in parental effort has on the reproductive 
potential of  male and female offspring rather than to differences in 
the physiological or energetic costs of  producing either sex (see also 
McDonald et al. 2005; Bowers et al. 2013a).
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Procedures and experimental design

Beginning in May 2010 and continuing over the next 4 weeks (i.e., 
the first brood of  the breeding season), we visited nest-boxes at least 
twice weekly to check for female settlement. On finding evidence of  
female settlement (presence of  a lined nest), we visited nests daily 
thereafter to number eggs with nontoxic markers and to weigh 
them the morning each was laid to the nearest 0.001 g with an 
electronic balance (Acculab Pocket Pro 2060D). We removed eggs 
2–5 in the laying sequence on the morning each was laid, leaving 1 
egg in the nest throughout this time to avoid female abandonment. 
We stored eggs 2–5 in the laboratory at constant, air-conditioned 
room temperature (ca. 21  °C) and returned them to nests on the 
morning that females laid their sixth egg. Most females continued 
to produce eggs for several days until the tactile stimulation of  eggs 
on their brood patch led to a cessation of  egg production and ini-
tiation of  full incubation (Lea and Klandorf  2002; Vleck 2002). 
Egg production did not end instantaneously, so females produced 
supernumerary eggs (Bowers et al. 2012a). These subsequently laid 
eggs were numbered and weighed on the morning each was laid. 
Once females finished laying eggs and commenced full incubation, 
we trapped them inside their nest-box using a sliding trap door or 
using mist nets outside the nest-box. We delayed capturing females 
until approximately halfway through incubation because they aban-
don the nest if  captured earlier (C.F. Thompson, unpublished data), 
so we were unable to obtain data on females prior to implementing 
the egg-removal treatment. Although we standardized the timing 
of  female capture, our data on female body mass does not repre-
sent female mass immediately prior to oviposition; thus, we did not 
attempt to establish a correlation between maternal body mass and 
the sex ratio here (see Sheldon and West 2004).

We removed eggs 5–10 (if  present) from nests once females had 
completed their clutch and commenced full incubation. On the same 
day, we transferred these eggs to the laboratory for incubation in a 
Grumbach 8014 compact S84 incubator for 7–8  days (conditions 
described in Robinson et  al. 2008). After incubation, we extracted 
embryos, rinsed them thoroughly with sterile water, and stored them 
in Queen’s lysis buffer (Seutin et al. 1991) for later DNA extraction 
and PCR-based sexing using the primers described by Kahn et  al. 
(1998; see Bowers et al. 2011 for further detail). Because we sought 
to test whether offspring sex varied among eggs 5–10, only these eggs 
were transferred to the incubator and subsequently sexed. Thus, our 
sex-ratio data are for eggs 5–10 and not for the entire clutch.

Data and analyses

The eggs analyzed here were produced by females in a previous 
study (Bowers et  al. 2012a), in which we demonstrated that the 
egg-removal treatment significantly increased clutch sizes relative to 
what females ordinarily would produce. Here we analyze the sex of  
offspring produced by these females but do not analyze clutch size 
or the effect of  our treatment on egg mass per se, as these data are 
reported elsewhere (Bowers et al. 2012a). We included data only for 
clutches for which the female ceased egg laying and commenced full 
incubation (N  =  31), and each clutch was produced by a different 
female. We used SAS statistical software (SAS 9.3, SAS Institute, 
Cary, NC) for our analyses, and all tests are two tailed. We first ana-
lyzed among-nest variation in sex ratios of  the collected eggs (i.e., 
eggs 5–10 if  all were present or had been produced) using logistic 
regression (PROC GENMOD in SAS) with the number of  male 
offspring among the collected eggs as the dependent variable and 
the number of  offspring sexed as the binomial denominator (i.e., 

events/trials syntax) using binomial error variance and a logit link 
function. This analysis included the total number of  eggs a female 
produced (i.e., clutch size) as a fixed effect. We were unable to sex 29 
of  129 eggs collected from nests because the egg was either infertile 
or embryonic development in the incubator stopped at such an early 
stage that we were unable to obtain useable DNA for amplification. 
There was no association between clutch size, female body mass, 
and relative egg mass or laying order on the probability of  sexing an 
egg successfully (all P > 0.3; using absolute values of  egg mass and 
laying order yields the same conclusions; see also Table 1). Although 
the percentage of  unsexed offspring (22%) was higher than desired, 
it is important to note that this does not preclude a reliable analysis 
of  sex-ratio data and should create only noise, not a bias, in our 
results (see Krackow and Neuhäuser 2008). Indeed, the sample of  
unsexed offspring would have to be extremely biased toward either 
sons or daughters to create a difference between the true primary 
sex ratio and the sex ratio we measured (West 2009).

We then analyzed variation in the sex of  individual offspring 
among eggs 5–10 (N = 100 eggs) using a generalized linear mixed 
model (GLMM; PROC GLIMMIX) with maternal identity as 
a random effect and a binary distribution and logit link function 
(Krackow and Tkadlec 2001). We tested whether relative egg mass 
(the difference between the fresh weight of  each egg and the clutch 
mean; Krist and Remeš 2004), relative laying order (egg number 
divided by clutch size), and the interaction of  the 2 influenced 
the sex of  individual offspring. We used values relative to the rest 
of  the clutch to facilitate comparisons of  clutches that differed in 
size, and we also used absolute values of  fresh egg mass and laying 
order in a separate model to compare the 2 approaches. We used 
2 separate models that differed by their use of  relative versus abso-
lute values of  egg mass and laying order to avoid multicollinear-
ity, but analyzing offspring sex using absolute and relative values 
in a single model yields the same qualitative results (not shown). 
We did not use a model-simplification procedure (i.e., remove the 
nonsignificant interaction between relative laying order and relative 
egg mass) because we had predicted a priori an interaction between 
these variables in their effect on offspring sex.

Results
Offspring sex ratio

As reported previously, our egg-removal manipulation significantly 
increased the number of  eggs produced by females relative to 
that which they would normally produce (means ± SE = 8.2 ± 0.3 
eggs for females in this study vs. 6.6 ± 0.1 eggs for unmanipulated 
females; Bowers et  al. 2012a). Females also varied widely in their 
response to our manipulation, as females subjected to the egg-
removal treatment displayed much more variation in clutch size 

Table 1 
Distribution of  eggs that were not sexed in relation to egg 
number and clutch size (see text for details)

Egg number

Clutch size 5 6 7 8 9 10

6 2 2 — — — —
7 0 2 1 — — —
8 2 2 3 1 — —
9 1 0 1 1 1 —
10 0 3 2 3 2 0
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(coefficient of  variation = 0.205) than unmanipulated females (coef-
ficient of  variation = 0.127). The sex ratio of  offspring produced 
from eggs 5–10 was positively correlated with clutch size (logistic 
regression parameter estimate ± SE  =  0.387 ± 0.152, χ2

  =  6.51, 
P = 0.011; Figure 1). The females that produced the largest clutch 
sizes in response to our egg-removal treatment overproduced sons, 
and the females that produced fewer eggs in response to the egg-
removal treatment overproduced daughters (Figure 1).

Individual offspring

As we previously documented (Figure  4 in Bowers et  al. 2012a), 
the mass of  eggs increased with the order in which they were laid 
until females produced the sixth egg, after which the mass of  sub-
sequent, supernumerary eggs declined. The sex of  individual 
eggs was correlated with relative laying order (parameter estimate 
± SE = −2.77 ± 1.33, F1,96 = 4.35, P = 0.040), such that the pro-
portion of  sons was higher in earlier-laid than in last-laid eggs 
(Figure  2A), but there was no effect of  relative egg mass (param-
eter estimate ± SE = 19.3 ± 16.5, F1,96 = 1.36, P = 0.246), and no 
interaction between relative egg mass and laying order in their 
effects on offspring sex (parameter estimate ± SE = −25.5 ± 16.5, 
F1,96 = 1.71, P = 0.195).

We also performed these analyses using absolute values of  
egg mass and egg number instead of  values relative to the rest 
of  the clutch. Unlike relative laying order, there was no correla-
tion between absolute egg number and offspring sex (parameter 
estimate ± SE = 2.08 ± 2.18, F1,96 = 0.91, P = 0.342; Figure 2B); 
there was also no association between fresh egg mass and sex 
(mean egg mass ± SE = 1.41 ± 0.1 g for each sex; parameter esti-
mate ± SE  =  10.2 ± 11.2, F1,96  =  0.91, P  =  0.365), and no inter-
action between egg mass and egg number (parameter estimate ± 
SE = −1.54 ± 1.57, F1,96 = 0.95, P = 0.332).

Discussion
Our egg-removal manipulation increased egg production and 
reduced allocation into individual eggs (see Bowers et  al. 2012a). 
Given the extent to which egg production is limited by nutrient avail-
ability (Graveland et  al. 1994; Johnson and Barclay 1996; Tilgar 

et  al. 2002; Mänd and Tilgar 2003; Zanette et  al. 2006), females 
clearly have a limited capacity to invest in eggs beyond what they 
normally produce (Williams and Miller 2003; Wagner and Williams 
2007). As predicted, mothers producing larger clutches in response to 
egg removal produced a male bias relative to mothers that produced 
fewer eggs. Although it is predicted that an increase in parental 
ability, as reflected by the number of  young produced, should cor-
relate with an increase in the proportion of  sons within a clutch or 
litter (Williams 1979; Figure 3 in Frank 1990), our findings conflict 
with those of  other studies that did not detect a correlation between 
clutch size and sex ratio (Westerdahl et al. 1997; Kölliker et al. 1999; 
Whittingham and Dunn 2000; Leech et al. 2001; Rosivall et al. 2004) 
although one might not necessarily expect a correlation between 
clutch size and the sex ratio in unmanipulated clutches if  clutch size 
is individually optimized. Indeed, variation in the size, number, and 
sex of  offspring can create confusion surrounding predictions of  sex-
allocation theory, as high-quality mothers might maximize their fit-
ness simply by producing more offspring rather than by manipulating 
the sex of  a smaller number of  progeny (Frank 1990; Carranza and 
Polo 2012). Myers (1978) suggested that if  either sex is more sensi-
tive to harsh environmental conditions, mothers should produce an 
excess of  the less-sensitive sex under such conditions to maximize the 
number of  surviving offspring. This differs from the Trivers–Willard 
model, in which sex ratios are adjusted to maximize the expected 
reproductive potential of  offspring at independence, and Myers’ 
model predicts that the less-sensitive sex should be overproduced 
when resources are in short supply (see also Merkling et al. 2012). In 
house wrens and other species, sons are more sensitive than daugh-
ters to environmental conditions early in life (Bogdanova and Nager 
2008; Sockman et al. 2008; Rosivall et al. 2010; Bowers et al. 2011; 
E. K. Bowers, unpublished data). Thus, our data on the sex ratio of  
collected eggs are consistent with Myers’ (1978) model, as females 
producing small clutches overproduced daughters; on the other 
hand, our finding that females overproduced sons among earlier-laid 
eggs and daughters among later-laid eggs is also consistent with the 
prediction that parents should respond to the anticipated reproduc-
tive potential of  individual offspring. Similarly, in a recent study on 
collared flycatchers (Ficedula albicollis), the proportion of  sons that 
females produced among their own young was positively correlated 
with the body mass of  foster offspring they reared to independence 
(Bowers et al. 2013a).

We previously determined that sons and daughters occur in rela-
tively equal frequencies across the laying sequence in synchronously 
hatching broods, but that there is a sex-biased laying order for asyn-
chronously hatching broods (Figure 5 in Bowers et al. 2011; see also 
Albrecht 2000). We could not determine whether eggs would have 
hatched synchronously or asynchronously in this study because we 
removed eggs from nests on the day they were laid, thus disrupt-
ing the normal course of  incubation the eggs would otherwise 
have undergone. It is important to note, however, that differences 
in allocation toward individual offspring still predict a sex bias 
among eggs of  differing size, regardless of  hatching asynchrony. It 
is also worth noting that a correlation between relative laying order 
and offspring sex was detected within clutches (Figure 2A) despite 
the fact that sons and daughters were produced in equal frequen-
cies among nests with respect to egg number (Figure 2B), thereby 
demonstrating the value of  within-clutch comparisons (see Krist 
and Remeš 2004; Rosivall 2008). The discrepancy in results sug-
gests that females allocate sex to eggs in the laying sequence in a 
manner that is clutch-size dependent and not in relation to absolute 
egg number although evidence for this from other studies is mixed 

Figure 1
Sex ratio (proportion of  male offspring) of  collected eggs 5–10 in relation to 
clutch size. Bubble sizes are proportional to the number of  overlapping data 
points: the smallest bubbles represent a single clutch, the next 2 larger sizes 
represent 2 and 3 clutches, and the largest bubble represents 6 clutches.
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(Cichoń et  al. 2003; Johnson et  al. 2005; Ležalová et  al. 2005; 
Bowers et al. 2011, 2013a).

Egg size represents an important source of  maternal investment, 
as it positively predicts offspring size and other fitness-related traits 
after hatching (Styrsky et al. 1999, 2000; Krist 2009, 2011; Love and 
Williams 2011); thus, we predicted that large eggs would more likely 
contain sons and smaller eggs would more likely contain daughters 
(Cordero et al. 2000, 2001; Martyka et al. 2010). The lack of  a cor-
relation between egg mass and offspring sex may be attributable to 
constraints on the ability of  females to allocate egg size differentially 
to sons and daughters. Because offspring sex is determined immedi-
ately prior to ovulation, it is unlikely that mothers can appreciably 
alter their allocation to individual oocytes during the brief  window 
of  time between meiosis and ovulation; in contrast, the maturation 
of  premeiotic follicles provides ample time for ecological cues to 
influence allocation to oocytes prior to meiosis (Young and Badyaev 
2004; Badyaev et al. 2005, 2006, 2008). Consequently, the yolk envi-
ronment may influence offspring sex prior to ovulation or oviposi-
tion (Rutkowska and Badyaev 2008; Tagirov and Rutkowska 2013). 
Thus, the potential for sex-specific allocation within the egg remains 
(see also Chin et  al. 2012), but this would seem more likely to be 
manifested by adjusting offspring sex in response to egg constituents 
rather than adjusting allocation of  resources to eggs in response to 
offspring sex (but see Saino et al. 2010).

Notwithstanding the potential constraints to adjusting egg size in 
response to offspring sex, the order in which eggs form prior to ovi-
position, and the maternally derived compounds they contain, may 
account for the biased sex ratios we have observed across the laying 
sequence (see, Pike and Petrie 2003; Alonso-Alvarez 2006; Sockman 
et al. 2006; Rutkowsa and Badyaev 2008). Variation in maternally 
derived hormone concentrations has been shown to influence the 
formation of  cytological morphology in dividing cells, which can 
create non-Mendelian segregation of  sex chromosomes during 
meiosis (Rutkowska and Badyaev 2008). Alternatively, differences in 
the growth rate of  follicles within an ovary prior to ovulation could 
cause sex-specific ovulation order (Badyaev et  al. 2005), which is 
consistent with the notion that sons and daughters frequently dif-
fer in their sensitivity to early environmental or hormonal condi-
tions (Myers 1978; Sockman et al. 2006, 2008). Significant sex-ratio 
bias within clutches from day to day, without gaps in egg laying, 
may suggest sex-ratio adjustment prior to ovulation, but a recent 

hypothesis posits that maternally derived hormones could influence 
the sex of  embryos after meiosis and ovulation but before ovipo-
sition via sex-specific growth of  early chimeric embryos (Tagirov 
and Rutkowska 2013). According to this hypothesis, the hormonal 
milieu experienced by the zygote can promote the retention of  
the first polar body formed during meiosis and, then, with poly-
spermatic fertilization, create ZZ- and ZW-bearing cells within a 
single blastodisc/embryo. Variation in the hormonal profile of  
the yolk could then cause the female or male cells to divide at an 
unequal rate such that cell division for 1 sex eventually ceases while 
the other sex’s cells proliferate and form the embryo (Tagirov and 
Rutkowska 2013). This novel hypothesis assumes that segregation 
can be random and that follicles are ovulated in their traditionally 
assumed early hierarchical order; this hypothesis is also consistent 
with the notion that sons and daughters frequently differ in their 
sensitivity to the hormonal milieu of  the yolk (see also Sockman 
et al. 2006, 2008).

Whether vertebrate mothers allocate the sexes according to 
prediction remains controversial (Wheelwright and Seabury 2003; 
Uller 2006), contributing to sustained interest in vertebrate sex allo-
cation. Given that many factors influence optimal allocation to sons 
and daughters (Leimar 1996; Hewison and Gaillard 1999; Hewison 
et  al. 2005; Wild and West 2007), the context dependence of  sex 
adjustment can cause sex ratios to vary widely in time and space 
(see also Forsman, Hjernquist et  al. 2008; Hjernquist et  al. 2009; 
Taff et  al. 2011; Baeta et  al. 2012; Michler et  al. 2013). Further 
work integrating ecological conditions with maternal physiology 
may shed light on the mechanism(s) by which sons and daughters 
are produced with changes in maternal quality (see also Bowden 
et  al. 2000; Love et  al. 2005; Sockman et  al. 2006; Bonier et  al. 
2007).
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